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ARTICLE INFO ABSTRACT

Keywords: Two 2D coordination polymers (CPs), namely, {[Cu(bib);]-2NO3-H20}, (1) and {[Zng(bib)35(C204)3(H20)]1-
Supramolecular ) DMF-H20}, (2) {bib = 1,4-bis (1-imidazoly) benzene} have been synthesized under solvothermal conditions. The
Fl}lorescent sensing structural analysis revealed that both 1 and 2 are 2D frameworks, which are further expanded into 3D supra-
E;;Eo?;g:‘anc compounds molecular structures through C—H---O hydrogen bonding. Luminescence properties reveal that 1/2 has highly

Aqueous solution

sensitive and selective recognization for nitroaromatic compounds (NACs)/Fe>* ions in aqueous solutions.

Moreover, the luminescence quenching mechanisms were systematically revealed via photoinduced electron
transfer (PET) process, resonance energy transfer (RET) and fluorescence lifetime.

1. Introduction

With the development of industry, more and more types of pollutants
threaten human safety and health. Nitroaromatic compounds (NACs)
are not only intermediates of fine chemicals such as medicines, dyes, and
leather, but also the main components of explosives, making a great
contribution to the progress of the industry [1-5]. However, in the past
few years, a large number of NACs from factories and laboratories have
been discharged into lakes and rivers, and have caused great harm to the
environment [6]. [ron is one of the essential elements of the human body
[7-10]. Due to the massive discharge of industrial wastewater, the
content of iron in the ecosystem has increased. But excessive iron in the
human body can cause liver cirrhosis, osteoporosis and diabetes [11,12].
Therefore, it is urgent to find a suitable material that can sensitively and
selectively detect target pollutants in the environment [13].

At present, the methods for detecting the above-mentioned pollut-
ants mainly include ion chromatography, ion mobility spectrometry,
surface-enhanced Raman spectroscopy and inductively coupled plasma,
but these methods have some disadvantages of complicated operations
and expensive cost [14-20]. In recent years, coordination polymers
(CPs) with excellent optical properties and controllable structures have
caused extensive attention by chemists due to their potential application
in identifying pollutants [21-31]. Tsai et al. have reported a series of Zn
(ID) CPs as efficient fluorescent sensors for detecting NACs in toluene
[32]. Zhang et al. have synthesized luminescent CPs for sensing 2,4,6-tri-
nitrophenol in DMF solution [33]. So far, the detection of the above-

* Corresponding author.
E-mail address: 491813789@qq.com (Y. Zhang).

https://doi.org/10.1016/j.inoche.2020.108293

mentioned pollutants, especially NACs, was mainly carried out in
organic solvents. This makes the identification of pollutants unfavorable
for practical applications, and at the same time causes secondary
pollution to the environment [34].

Based on the above situation, 1,4-bis (1-imidazoly) benzene (bib)
was selected to construct the title CPs based on the following consid-
erations: (a) The structure of CPs is easy to control due to its simple
coordination mode. (b) It can be used as a hydrogen bond acceptor to
facilitate the construction of a 3D supramolecular structure [35].
Herein, two 3D supramolecular CPs, namely, {[Cu(bib)2]-2NO3-H20},,
(1) and {[Zn3(bib)25(C204)3(H20)]-DMF-H,0}, (2), have been suc-
cessfully prepared (Scheme S1 and Scheme S2). In addition, lumines-
cence sensing experiments of 1 and 2 were investigated in aqueous
solution in detail. Meanwhile, the luminescence quenching mechanisms
of NACs and Fe>" ions for 1 and 2 were also explored by photoinduced
electron transfer (PET) process, resonance energy transfer (RET) and
fluorescence lifetime.

2. Synthesis of compounds
2.1. Synthesis of {[Cu(bib)2]-2NO3-H20},, (1)

A mixture of Cu(NOs)2-3H20 (0.012 mmol, 2.5 mg), bib (0.004
mmol, 0.8 mg), DMF/H,0 (1 mL, v/v = 1/4) and NaOH solution (0.2

mol/L, 0.05 mL) was added to the hard glass tube, pumped into a near-
vacuum, heated to 85 °C for 3000 mins and cooled naturally to 25 °C.
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Purple block crystals of 1 were obtained by washing three times alter-
nately with mother liquor. Yield: 43% based on bib. Anal. (%) calcd. for
Co4H2oN71907Cu: C, 47.48; H, 3.63; N, 23.08. Found (%): C, 48.01; H,
6.49; N, 22.97. IR (KBr pellet, cm’l): 3113 (m), 2373 (vs), 1938 (w),
1830 (w), 1554 (s), 1507 (m), 1394 (m), 1278 (w), 1132 (s), 1067 (s),
982 (m), 832 (m), 664 (s), 537 (w) (Fig. S1a).

2.2. Synthesis of {[Zn3(bib)2 5(C204)3(H20)]-DMF-H20}, (2)

Zn(NO3)2-6H20 (0.012 mmol, 3.6 mg), bib (0.004 mmol, 0.8 mg)
and CoH404-2H50 (0.008 mmol, 1.0 mg) were dissolved in 1 mL DMF/
H,0 (v/v = 1/1) mixed solution, which was sealed to the hard glass tube
under vacuum, heated to 120 °C for 3000 mins and slowly cooled to
ambient temperature. Colorless block crystals of 2 were gained by
filtering and washing with mother liquor. Yield: 47% based on bib. Anal.
(%) calcd. for C75HgsN21029Zng: C, 42.52; H, 3.07; N, 13.89. Found (%):
C, 42.46; H, 3.12; N, 13.71. IR (KBr pellet, em™1): 3398 (m), 3138 (w),
2362 (m), 1702 (m), 1610 (s), 1528 (m), 1307 (vs), 1143 (m), 1061 (vs),
960 (m), 839 (m), 801 (s), 733 (m), 642 (m), 542 (w) (Fig. S1b).

3. Results and discussion
3.1. Structural descriptions

3.1.1. {[Cu(bib),]-2NO3-H20}, (1)

The structural analysis indicates that 1 crystallizes in the ortho-
rhombic crystal system Pcan space group. The asymmetric unit contains
one independent Cu (II) ion, two bib ligands, two lattice NO3 ions and
one lattice H,O molecule (Fig. 1). Each Cu (II) ion is tetra-coordinated
by four N-atoms from four different bib ligands (Cu(l) - N(2) =
1.9845 (95) A, Cu(1) - N(2)B = 1.9845 (49) A, Cu(1) - N(5)A = 2.0073
(48) 10\, Cu(1) - N(5)C = 2.0073 (48) /0\), displaying a quadrangular
geometry. The bond angles around the Cu (II) ion are 89.608 (19 3)° and
90.392 (193)° (Table S2), which are consistent with the reported Cu-
CPs [36].

As can be seen from Fig. S2, the bib ligands with trans-conformation
connect with Cu (II) ions by a bridging pattern to construct 1D [Cu
(bib)],, chains with the distance between Cu---Cu being 13.0803 (17) A,
which are bridged by bib ligands to form 2D layered structures. More-
over, as shown in Fig. 2, the 2D layer is further extended into a 3D su-
pramolecular structure via C—H---O hydrogen bonds between bib
ligands and lattice NOj3 ions (Table S3).

N2A

N2C

Fig. 1. Coordination environment of the Cu (II) in 1. Hydrogen atoms are
omitted for clarity. (Symmetry codes: A: 1.5 - x,0.5 —-y,0.5+2zB:1 —x,1—
y,1 —2;C: -0.5+x, 0.5+y, 05— 2z).
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Fig. 2. A 3D supramolecular structure of 1 formed by hydrogen bonds
interactions.

3.1.2. {[Zn3(bib)2 5(C204)3(H20)]-DMF-H20}, (2)

The structural analysis reveals that 2 crystallizes in the triclinic
system P —1 space group. As depicted in Fig. 3, the asymmetric unit of 2
consists of three Zn (II) ions, two and a half bib ligands, three oxalate
molecules, one coordinated HoO molecule, one lattice DMF molecule
and one lattice H,O molecule. Both Znl (II) and Zn2 (II) ions are six-
coordinated by two N-atoms of two different bib ligands and four O-
atoms of two oxalate, exhibiting irregular octahedral geometries.
Although the Zn3 (II) ion is also six coordinated and presents a distorted
octahedral geometry, it is surrounded by one N-atom from bib linker and
five O-atoms from two oxalate and one coordinated H,O molecule
(Fig. S3d). The Zn-O/N bond distances are between 2.054 (3) A and
2.183 (3) A. The bond angles around Zn (II) ions vary from 77.75 (9) to
172.81 (10)° (Table S2), which are in accordance with the values re-
ported in the literature [37].

In Fig. S3, oxalate adopts a chelated coordination mode to link with
Zn (II) ions forming a trinuclear cluster with the nearest Zn---Zn distance
of 5.4065 (8) A, which is expanded by oxalate to form 1D left-handed
and right-handed helix chains, which are further linked by bib ligands
to form 2D layered structures. Finally, the 2D layer is expanded into a 3D
supramolecular structure (Fig. 4) through C—H:--O hydrogen bonds
between oxalate and bib ligands (Table S4).

3.2. Powder X-ray diffraction (PXRD) analysis and thermal analysis

PXRD patterns of 1 and 2 were measured to verify their phase purity.
As exhibited in Fig. S4 that the experimental diffraction patterns of 1 and
2 are basically consistent with those of the simulated ones. To further
investigate the chemical stability of CPs 1 and 2, the PXRD patterns of 1
and 2 soaked in water for 4 h, 8 h, 12 h and 24 h were recorded. As
shown in Fig. S5, the PXRD patterns of the samples immersed in aqueous
solution for different times are basically the same as those of the as-

N3A N4A

N5

Fig. 3. Coordination environment of the metal Zn (II) in 2. (Symmetry codes:
Ar-1-%x1-y,1 -2z B -1+x -1+y,2z).
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Fig. 4. A 3D supramolecular structure of 2 obtained by H-bonding interactions.

prepared ones, indicating that CPs 1 and 2 have higher water stability,
which can be attributed to the intramolecular hydrogen bonding [38].
The thermal stability of 1 and 2 at 25-800 °C was measured under Ny
atmosphere (Fig. S6). As for 1, the weight loss of 2.83% (calcd. 2.87%)
was attributed to the release of one lattice water molecule between 75 °C
and 103 °C, and the weight loss of 19.82% (calcd. 19.80%) was ascribed
to the release of two lattice NOZ in the temperature range of
103-170 °C. Then, the framework of 1 began to collapse above 435 °C.
For 2, the obvious weight loss of 1.88% (calcd. 1.64%) was attributed to
the removal of one lattice water in the temperature range of 80-120 °C,
the weight loss of 8.26% corresponds to the release of one coordinated
water molecule and one free DMF molecule (calcd. 8.32%) at
240-300 °C. The framework of 2 began to collapse above 390 °C.

3.3. Luminescent sensing

As shown in Fig. 5, the solid state fluorescence spectra of bib ligand,
1 and 2 were measured at room temperature. The main emission peak of
free bib ligand is observed at 343 nm (Aex = 275 nm), which may be
attributed to the n — ©* or © — ©* transitions [39,40]. Meanwhile, 1 and
2 exhibit the emission peaks at 343 nm and 360 nm (Aexy = 275 nm),
respectively. Compared with the free bib ligand, the emission peak of 2
is slightly red-shifted, which can be assigned to the effect of coordination

= bib ligand
—
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0
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Fig. 5. The emission spectra of 1, 2 and bib ligand.
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[41,42].

3.3.1. Sensing of NACs

In view of the excellent fluorescence properties of 1 and 2, the
fluorescent sensing performances of 1 and 2 for NACs, including nitro-
benzene (NB), nitrotoluene (NT), nitrophenol (NP), nitroaniline (NA),
were explored in aqueous solution. 2.0 mg finely ground samples were
dispersed in 2 mL aqueous solution of NACs with different concentra-
tions, respectively, and treated with the ultrasonic waves for 30 mins to
form uniform suspensions.

As shown in Fig. 6, the luminescence intensities of 1 and 2 gradually
decreased with the rise of NACs concentration. Among NACs, NP has the
most obvious quenching effect on CPs and the quenching order of NACs
for CPs follows NP > NB > NT > NA. In addition, the Stern—-Volmer
equation was used to explain the relationship between Iy/I and the
concentration of NACs. As summarized in Fig. S7 and S8, the plot of Ip/I
vs the concentration of NACs is linear at lower concentration, where I
and I are the luminescence intensities without and with NACs, respec-
tively. Meanwhile, the Ky values of title CPs for NACs were calculated to
be 1.5 x 10* M~* (NP), 9.8 x 10* M~ (NB), 4.4 x 10> M~ (NT), 2.3 x
10°M ! (NA) for 1 and 9.8 x 10° M ! (NP), 6.5 x 10° M ! (NB), 6.4 x
103 M1 (NT), 2.5 x 103 M~ ! (NA) for 2. In addition, the detection limits
for NACs obtained by the formula of 35/k (8 is the standard deviation of
the fluorescence intensity data), were 7.6 x 10° M (NP), 1.1 x 104 M
(NB), 2.5 x 10" M (NT), 4.9 x 10 M (NA) for 1 and 1.1 x 10™* M (NP),
1.7 x 10* M (NB), 1.7 x 10°* M (NT), 4.5 x 10™* M (NA) for 2 (Table S5).
When the concentration of NACs reaches 1 mM, the quenching effi-
ciencies of CPs are 99.32% (NP), 97.67% (NB), 87.73% (NT) and
80.36% (NA) for 1, and 98.91% (NP), 94.45% (NB), 89.99% (NT) and
80.06% (NA) for 2, respectively (Fig. S9 and Fig. S10).

The luminescent quenching mechanisms of NACs for 1/2 were
explored. Firstly, the PXRD patterns of 1/2 after the fluorescence ex-
periments are basically consistent with those of the simulated ones with
single crystal data (Fig. S11), which rules out that fluorescence
quenching was caused by the structural collapse. Secondly, as depicted
in Fig. 7, the lowest unoccupied molecular orbitals (LUMO) energy of
the bib ligand obtained by using the density functional theory (DFT) at
the B3LYP/6-31G* level is higher than the LUMO energy of the NACs,
which makes the electrons transfer from the bib ligand of 1/2 to the
LUMOs of NAGCs, resulting in fluorescence quenching. The lower the
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8000 ‘l o
7000 , i
= 6000 ‘ “NT
£ 5000 uNA
2 4000
£ 3000 ‘ ’
£ 2000 i
1000 o
0 o o ey
Q@" w\ Qﬁc’ Ng Q’ﬁ’ ? Q’b(" N QP?’ SN IR
NACs Concentration (mM)
(®)
NP
8000
“NB
“NT

6000

Intensity (a.u)
(SRS
S S
S S
(=] (=]

Ju%%ﬂw;;

SRR PO ICRCINC IR

(=1

Q B\

NACs Concentration (mM)

Fig. 6. The luminescence intensities of 1 (a) and 2 (b) when the NACs con-
centration is in the ranges of 0-1 mM.
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LUMO energy of NACs, the better the quenching effect [43,44]. How-
ever, the quenching order of NP > NB > NT > NA is not consistent with
the quenching order of NB > NP > NT > NA based on LUMO energy,
which indicates that the PET process is not the only cause of fluores-
cence quenching. Thirdly, as shown in Fig. S12, there is an obvious
overlap between the emission spectra of 1/2 and the absorption spectra
of NACs. The spectral overlap degree (NP > NB > NT > NA) of NACs and
1/2 is exactly consistent with the luminescent quenching of NACs for 1/
2. This result clearly demonstrated that RET processes occurred between
NACs and 1/2 [45]. Finally, the fluorescence lifetime of the 1/2 before
and after fluorescence sensing NACs experiments were tested (Fig. S13
and Fig. S14). As summarized in Table S8 that the fluorescence lifetime
of 1/2 is basically unchanged after sensing NACs, which reveals that
fluorescence quenching is static process.

3.3.2. Sensing of cations

The ground powder samples of 1 and 2 (2 mg) are dispersed in 2 mL
M(NO3), aqueous solutions (0.01 mol/L, M = Na™, Agt, K*, Ca?*, cu?*,
C02+, Ni2+, Mn2+, Ba2+, Zn2+, Cd2+, Pb2+, Hg2+, Fe2+, A" and Fe3)
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Fig. 8. The luminescence intensities of 1 (a) and 2 (b) in aqueous solutions
containing different metal ions.
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by ultrasonic treatment for 30 mins to form uniform suspensions.

As shown in Fig. 8, when Fe>* was added to 1 and 2, the fluorescence
intensities of 1 and 2 were significantly quenched compared with other
ions. The quenching effect of Fe>* for 1 and 2 was further explored. As
shown in Fig. 9, the fluorescence intensities of 1 and 2 gradually
decreased with the addition of Fe*™. When Fe>' ions (1 mM) were
added, and the quenching efficiency reached 99% (Fig. S15). Mean-
while, the quenching efficiency can be quantitatively evaluated by Kgy
based on the Stern-Volmer equation: Ip/I = 1 + Kgy[Q], where Iy and I
are the luminescence intensities without and with Fe3* ions, respec-
tively, Kgy is the quenching constant and [Q] is the concentration of Fe3*
ions. As shown in Fig. S16, there was a good linear relationship between
Io/1 and the concentration of Fe3* ions at lower concentration, and Ksy
was calculated to be 1.2 x 10° M~! for 1 and 8.9 x 10* M~ for 2, which
were higher than those of recently reported CPs luminescent sensors for
the detection of Fe>* ions [46-49] (Table S6). Moreover, the detection
limits for Fe>* ions were 2.78 x 10 M for 1 and 4.99 x 10 M for 2
(Table S7). Furthermore, the anti-interference experiments of 1/2 to-
ward Fe3* jons in the presence of other ions were carried out. As shown
in Fig. S17, when Fe3" ions were added to the aqueous solution con-
taining other metal ions, the luminescence intensities decline sharply,
indicating that 1/2 shows good selectivity for Fe>* ions.

The luminescent quenching mechanisms of Fe®* for 1/2 were
researched. As illustrated in Fig. S18, the PXRD patterns of 1/2 after
fluorescence tests are well-matched with those simulated from the single
crystal data of 1/2, which reveals that the luminescence quenching of 1/
2 is not caused by the collapse of the structure. Meanwhile, compared
with other metal ions, the UV absorption spectra of Fe>* ion and the
emission spectra of 1/2 have greater overlap (Fig. S19), so the fluores-
cence quenching caused by Fe>* ions can be attributed to the RET
mechanism [50]. In addition, the fluorescence lifetime of 1/2 after
sensing Fe>" ion is basically the same as that of the as-prepared 1/2
(Fig. S13, Fig. S14 and Table S8), which indicates that fluorescence
quenching is static process [51].
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Fig. 9. The luminescence intensities of 1 (a) and 2 (b) when the Fe®* con-
centration is the ranges of 0-1 mM.
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4. Conclusion

Two 3D supramoleculars were solvothermally synthesized. Mean-
while, fluorescence experiments revealed that 1/2 has highly selective
and sensitive sensing toward NACs/Fe>" ions in aqueous solutions with
low dection limits. The quenching mechanisms of the analytes for 1/2
are attributed to PET, RET and static process for NACs, and RET and
static process for Fe®*, respectively. These results indicate that the title
CPs can be used as potential fluorescent sensors for the detection of
NACs/Fe>" ions in aqueous medium.
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It is possible to research the influencing factors of the electrocatalytic water splitting activity by controlling
the composition and morphology of the materials. In this study, an efficient morphology control of Ni-Co
layered double hydroxide/M-Mo-S (M = Zn, Co and Ni) hybrid materials was investigated by introducing
different metal ions into M-Mo-S. An adjustable morphology was successfully achieved by taking the
advantage of the growth mechanism of the Kirkendall growth and Ostwald ripening. The Ni-Co LDH/Ni-
Mo-S catalyst displayed an extraordinary oxygen evolution reaction performance (overpotential of 290 mV
at 40 mA cm™) and a superior durability (retention rate of 90%) at 10 mA cm 2 after 14 h compared to Ni-
Co LDH/M-Mo-S (M = Zn, Co and Ni) hybrid materials. A series of characterization analyses demonstrate
that the efficient electrochemistry performance of the material is assigned to the improved electrical
conductivity, greater exposure to active sites and faster oxygen outflow rate. The density functional theory
calculation results suggest that the in situ generated Mo-doped NiOOH has the optimal adsorption energy
of water compared to NiIOOH, which is probably the main active center in the water oxidation reaction.
Our study presents a new way of thinking for the development of high efficiency heterojunction catalysts

Received 19th February 2021,
Accepted 14th March 2021

DOI: 10.1039/d1ce00247¢

Published on 15 March 2021. Downloaded by North University of China on 5/31/2021 2:18:44 AM.

rsc.li/crystengcomm

1. Introduction

The growing energy crisis and increasingly severe
environmental pollution force us to develop new zero carbon
and pollution-free energy. Hydrogen has attracted wide public
attention because of its high combustion value, high energy
density and pollution-free combustion products. It is worth
noting that water electrolysis to hydrogen is considered as
one of the most fascinating alternatives to traditional coal
chemical engineering due to its simple equipment and high
purity hydrogen production."®  Electrocatalytic ~ water
electrolysis consists of two and a half reactions, namely
oxygen evolution reaction (OER) at the anode and hydrogen
evolution reaction (HER) at the cathode. The electrocatalytic
water splitting into hydrogen and oxygen is accomplished
through electricity, which is generated by solar energy or
waste electricity. In the whole water electrolysis reaction,
oxygen evolution reaction has become the bottleneck of water
electrolysis because it contains the kinetic obstruction of
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and guidance for the further realization of the industrialization of electrolytic water.

multiple electrons and protons. Therefore, it is very important
to develop relatively inexpensive, robust and environmentally
friendly water oxidation catalysts. According to literature
reports,”" the most active water oxidation catalysts at
present are the materials containing precious metals, such as
RuO, and IrO,. However, their scarcity, instability and high
price greatly limit their application in industrial production
for water splitting.'>2® Therefore, the exploitation of efficient,
relatively inexpensive and stable oxygen evolution reaction
electrode is both an opportunity and a challenge.*”*°

To date, metal oxides have been developed as electrodes
for the electrolysis of water, but their poor electrical
conductivity greatly limits their practical application.
Recently, layered double hydroxides (LDHs) and transition
metal sulfides (TMSs) have been exploited as promising water
splitting materials owing to their excellent
electroconductibility and electrocatalytic activity compared to
binary metal oxides. It is worth mentioning that bimetallic
LDHs and transition metal sulfides provide more redox sites
and greater specific surface area, leading to superior
electrocatalytic water electrolysis activity. For example, Wei
et al' reported the synthesis of CoMoS, nanoarrays on
carbon cloth by the sulfidizing processing of Co(OH)F in an
(NH,),MoS, solution. The CoMoS, nanoarrays exhibit
superior electrocatalytic performance in a neutral buffer
solution with an overpotential of 183 mV to obtain 10 mA

This journal is © The Royal Society of Chemistry 2021
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em™? as a HER material. Fichou et al.?” reported the synthesis
and electrochemistry activity of porous CoMo,S, nanoflake
materials. The CoMo,S,; sample presents better
electrochemistry activity with the need of a small OER/HER
overpotential of 306/162 mV to drive 10 mA ecm™>. Moreover,
Lee et al.*>® reported the synthesis of Ni-Co LDH/MMoS, (M =
Zn, Co and Ni) heterogeneous materials, and the Ni-Co LDH/
NiMos, sample displayed a superior specific capacity and a
satisfactory cycling stability. However, the previously reported
water splitting catalysts are still far from the industrial
production of hydrogen so far. This problem is caused by the
inadequate utilization of the surface active centers of the
materials and the slow electron transfer rate. Therefore, the
successful development of highly efficient water splitting
catalysts not only increases exposure to active sites of
materials but also increases charge transfer capacity. In
addition, the resistance can be reduced and the bubble
overflow rate can be promoted when the material is in situ
grown on the conductive substrate during the elelctrocatalytic
process. Hence, loading functional electrocatalysts with
refined morphology controlling and suitable exploiting on a
conductive frame greatly promotes the electrocatalytic activity
of water splitting catalysts.

In the study, for the first time, the morphology of Ni-Co
LDH/M-Mo-S (M = Zn, Co and Ni) hybrid materials was
successfully regulated by taking advantage of the growth
mechanism of the Kirkendall effect, ion exchange reaction
and Ostwald ripening. The Ni-Co LDH/M-Mo-S (M = Zn, Co
and Ni) hybrid samples present following four superiorities:
(i) when the material is in situ grown on the conductive
substrate, the resistance can be reduced and the bubble
overflow rate can be promoted during the electrocatalytic
process; (ii) precise control and reasonable design of the
morphology of water splitting electrodes not only increase
exposure to active sites of materials but also increase charge
transfer capacity, thus promoting the water splitting
performance; (iii) these hybrid electrode samples boost the
synergistic catalytic effect and improve the water oxidation
performance of the catalyst; and (iv) the design of
heterogeneous structures effectively accelerates the rate of
charge transfer and increases both the electrocatalytic
performance and reaction kinetics of the water oxidation
reaction. The precise control and reasonable design of Ni-Co
LDH/Ni-Mo-S hybrid materials are helpful to improve the
water oxidation reaction performance (overpotential of 290
mvV at 40 mA cm ) and excellent durability (retention rate of
90%) at 10 mA cm> after 14 h.

2. Experimental section

Preparation of the Ni-Co LDH/M-Mo-S (M = Co, Ni and Zn)
nanoarray on Ni foam

For the preparation of Ni-Co LDH/Co-Mo-S nanoarrays on
Ni foam, Co(NOj3),-6H,O (0.5 mmol), Na,M00O,-2H,0 (0.5
mmol) and CH;CSNH,, (1.5 mmol) were dissolved in a beaker
containing ultrapure water (80 mL) and stirred vigorously.

This journal is © The Royal Society of Chemistry 2021
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Then, the solution was poured into an autoclave and a piece
of pre-treated Ni foam was vertically inserted into the
autoclave. The reaction was kept at 110 °C for 3 h. The
reaction was naturally cooled to room temperature and the
resulting Ni-Co LDH/Co-Mo-S product was washed with
water. Ni-Co LDH/Ni-Mo-S and Ni-Co LDH/Zn-Mo-S
nanoarrays were obtained via the similar process except
replacing Co(NOj3),-6H,0 with Ni(NO3),-6H,O (0.5 mmol) and
Zn(NO3),-6H,0 (0.5 mmol), respectively.

3. Results and discussion

During the synthesis of Ni-Co LDH/M-Mo-S (M = Zn, Co and
Ni), Na,M00,-2H,0 provided a molybdenum source, CHj;-
CSNH, released S*~ ions constantly into the mixture through
hydrolysis, and the S*” ions readily got exchanged with the
OH' ions of the Ni-Co LDH surface, leading to the generation
of thin layers of Ni-Co-S on the outside surface of Ni-Co
LDH. In addition, differently controllable structures of Ni-Co
LDH/M-Mo-S (M = Zn, Co and Ni) hybrid materials can be
understood according to ion exchange, the Kirkendall effect
and Ostwald ripening. The essence of the Kirkendall effect is
the cation exchange between the outer surface and the inner
surface of the material, and vice versa. Ostwald ripening
reveals the formation of hybrid construction over time by
dissolving the smaller precipitates inside and reconstructing
the structure on the outer surface of a larger precipitate. By
regulating and controlling the mixed metal sulfide
composition, the structure tuning of resulting samples was
possible, which can have a large impact on its electrocatalytic
activity. The Ni-Co LDH and Ni-Co LDH/M-Mo-S (M = Zn,
Co and Ni) electrodes display three obvious diffraction peaks
at 43.9°, 52.1° and 76.1°, respectively, corresponding to the
characteristic peaks of the Ni foam substrate. The X-ray
diffraction images of Ni-Co LDH display five strong peaks at
18.9°, 32.9°, 39.0°, 58.9° and 63.2°, respectively, which are
assigned to the (001), (100), (011), (110) and (111) diffraction
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Fig. 1 XRD of Ni-Co LDH (a), Ni-Co LDH/Co-Mo-S (b), Ni-Co LDH/Ni-
Mo-S (c) and Ni-Co LDH/Zn-Mo-S (d).
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crystal planes of Ni(OH), (JCPDS no. 73-1520) and
B-Co(OH), (JCPDS no. 30-0443) (Fig. 1a). It is worth noting
that the XRD patterns of Ni-Co LDH/M-Mo-S (M = Zn, Co
and Ni) materials are similar to those of the Ni-Co LDH
material, and no apparent diffraction peaks of M-Mo-S (M
= Zn, Co and Ni) were observed. The possible reason is that
the loading amount of Ni-Co LDH/M-Mo-S (M = Zn, Co
and Ni) is about 2-3 mg on the Ni foam, which may be
beyond the detection limit for Ni-Co LDH/M-Mo-S (M =
Zn, Co and Ni) materials. It is noteworthy to mention that
the diffraction intensity of Ni-Co LDH/M-Mo-S (M = Zn, Co
and Ni) significantly reduced compared to that of Ni-Co
LDH (Fig. 1b-d), which also proves the existence of M-Mo-
S (M = Zn, Co and Ni). We tried to scrape the catalyst off
the Ni foam, but we were not successful because the
amount was too small. The Raman signal is also almost
unobservable, and this kind of phenomenon further
indicates that the material load is small (Fig. S17).

The morphology of the -catalyst also affects the
electrocatalytic performance of the material to a great extent.
The SEM analysis was first performed based on the above-
mentioned reasons. Fig. 2a-h display the hetero

x40.0k SE(U) 1.00um | Regulus 100KV 8.0mm x60.0k SE(U)

Fig. 2 SEM of the Ni-Co LDH material (a and b), Ni-Co LDH/Co-Mo-S
(c and d), Ni-Co LDH/Ni-Mo-S (e and f), Ni-Co LDH/Zn-Mo-S (g and
h).
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nanostructures of Ni-Co LDH/M-Mo-S (M = Zn, Co and Ni)
materials. Fig. 2a and b indicate that one-dimensional
nanorod and two-dimensional nanosheet architecture for the
Ni-Co LDH material formed with the irregular length and
size. The SEM image of Ni-Co LDH/Co-Mo-S displays a
flaky-spherical hybrid structure (Fig. 2c and d), and the
diameter of each nano spherical was measured to be around
100 nm. For the Ni-Co LDH/Ni-Mo-S material, the one-
dimensional nanorod and two-dimensional nanosheet
architecture microstructure of Ni-Co LDH are kept due to the
growth mechanism of Kirkendall growth and Ostwald
ripening (Fig. 2e and f). The thickness of the Ni-Mo-S shell
is observed to be around 500 nm. The hierarchical
architecture of the one-dimensional nanorod and two-
dimensional  nanosheet architectures promotes the
transmission and diffusion of the electrolyte and increases
the active site of the catalyst, thereby leading to a rapid
charge transfer rate and enhanced electrochemistry activity
of the electrode. In the case of the Ni-Co LDH/Zn-Mo-S
material, the flaky-spherical hybrid structure of the material
is maintained (Fig. 2g-h) and the diameter of the Co-Mo-S
shell is observed to be around 50 nm. The Ni-Co LDH/Ni-
Mo-S material displays superior electrocatalytic performances
because of the one-dimensional nanorod architecture of Ni-
Co LDH together with a thinner nanosheet of Ni-Mo-S
compared to Ni-Co LDH/M-Mo-S (M = Zn, Co and Ni)
materials.

Transmission electron microscopy (TEM) was done to
further investigate the morphology and composition of the
Ni-Co LDH/Ni-Mo-S sample. It can be seen from Fig. 3a that
the Ni-Co LDH/Ni-Mo-S electrode displays the core-shell
structure of nanorods, which is consistent with the
characterization analysis of SEM. The lattice fringe and

250nm S0n: SO0n:

Fig. 3 TEM (a), HR-TEM images (b) and corresponding EDS element
mapping of Ni-Co LDH/Ni-Mo-S/NF (c).
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microstructure of the Ni-Co LDH/Ni-Mo-S material were also
investigated via high resolution TEM (HR-TEM). The lattice
spacings of the electrode are 0.465 nm and 0.615 nm,
corresponding to the (001) and (002) plane spacings of Ni-Co
LDH and MoS, (Fig. 3b). The corresponding EDS elemental
mapping results (Fig. 3c) suggest that Ni, Co, Mo, S and O
are evenly distributed in the resulting Ni-Co LDH/Ni-Mo-S
material.

X-ray photoelectron spectroscopy (XPS) is an excellent
detection method for getting a deeper insight into the
microscopic properties and valence states of the Ni-Co LDH/
M-Mo-S (M = Zn, Co and Ni) material surface. The XPS full
scan spectrum of Ni-Co LDH/Ni-Mo-S displays the presence
of Ni, Co, Mo, O and S elements (Fig. 4a). The high-
resolution spectra of Ni 2p and Co 2p (Fig. 4b and c) split
into two main peaks accompanied by two shakeup satellites.
The low binding energy at about 855.5 and 857.2 eV and the
high binding energy at around 873.7 and 876.6 eV correspond
to the Ni 2p;, and Ni 2p;, of the Ni 2p spectrum,
respectively (Fig. 4b). The two shakeup peaks at around 862.3
and 879.9 eV are assigned to the satellite peaks of the Ni
oxidation state ions. In addition, the low binding energy at
about 781.5 eV and the high binding energy at about 797.5
eV correspond to the Co 2p;, and Co 2py, of the Co 2p
spectrum (Fig. 4c). The two shakeup peaks at about 784.3
and 803.2 eV are assigned to the satellite peaks of the Co
oxidation state ions. The experimental analysis demonstrates
the presence of the Ni oxidation state and Co oxidation state
ions in the Ni-Co LDH/Ni-Mo-S material. The high-
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Fig. 4 XPS of the Ni-Co LDH/Ni-Mo-S, survey (a), Ni 2p (b), Co2p (c),
Mo 3d (d), O 1s (e) and S 2p (f).
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resolution Mo 3d spectrum presents two peaks: one peak at
about 232.1 eV is assigned to Mo 3ds,, (Fig. 4d) and the other
peak at about 235.5 eV corresponds to Mo 3d;,, of Ni-Mo-S,
suggesting the existence of Mo®" ions. The O 1s spectrum
splits into two main peaks (Fig. 4e): one peak at 531.7 eV is
assigned to the M-O of Ni-Co LDH and the other peak at
about 533.5 eV corresponds to the adsorbed oxygen species
for the Ni-Co LDH/Ni-Mo-S material. It can be seen from
Fig. 4f that the binding energies of two peaks at about 161.9
and 164.0 eV correspond to S 2pz, and S 2py/, of Ni-Mo-S
for the S 2p spectrum. Another peak at around 169.0 eV is
indexed to oxidized sulfur on the Ni-Mo-S surface. These
XPS characterization analyses demonstrate that Co**, Co**,
Ni%*, Ni**, Mo®", 0*" and S>~ exist in the Ni-Co LDH/Ni-Mo-S
material.

The electrocatalytic performance of the Ni-Co LDH/M-
Mo-S (M = Zn, Co and Ni) material was investigated on a
typical three-electrode system in an alkaline medium. As
shown in Fig. 5a, the Ni-Co LDH/Ni-Mo-S material displays
the superior OER electrocatalytic performance (Table 1)
compared to Ni-Co LDH and Ni foam (Fig. S2f). It is
noteworthy to mention that different metal ions will greatly
affect the electrochemistry activity of the materials. From
Fig. 5a, a distinct oxidation peak can be observed, which is
attributed to Ni** to Ni** oxidation. It is important to note
that the increase in the first peak current may be assigned to
the capacitance of the material at 1.2-1.4 V. The increase in
the second peak current after 1.45 V is caused by the water
splitting for Ni-Co LDH/M-Mo-S (M = Zn, Co and Ni). The
Tafel slope of materials was also explored to research the rate
of electron transfer in the reaction. The Tafel slope of Ni-Co
LDH/Ni-Mo-S has a comparatively low value of 116.6 mV
dec™, which is smaller than those of Ni-Co LDH/Zn-Mo-S
(127.8 mV dec™"), Ni-Co LDH/Co-Mo-S (131.2 mV dec ') and

120 8 -
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Fig. 5 (a) OER curves of the Ni-Co LDH/M-Mo-S (M = Zn, Co and Ni)
materials. (b) Tafel plots of the Ni-Co LDH/M-Mo-S (M = Zn, Co and
Ni) sample. (c) The double layer capacitance of the Ni-Co LDH/M-Mo-
S (M = Zn, Co and Ni) material. (d) The overpotential of the Ni-Co
LDH/M-Mo-S (M = Zn, Co and Ni) sample.
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Table 1 Comparison of the water oxidation activity between the Ni-Co
LDH/Ni-Mo-S and other recently reported water oxidation
electrocatalysts

Catalyst Overpotential (j = 10 mA cm™>) Ref.
Ni-Co LDH/Ni-Mo-S 290 mV@40 mA cm > This study
O-CoP 310 mV 34
Se-MnS/NiS 211 mV 35
(Ni,C0)o.45Se@NiCo-LDH 216 mV 36
Ni,Fe;_.Se, 195 mv 37
NiFeP 219 mV 38
NF@NC-CoFe,0,/C 240 mV 39
CC/CNTs@C0Sq 745€05, 285 mV 40
CoMn oxide 221 mV 41
NF/H-CoMoO, 295 mV 42
CoSe,/FeSe, 240 mV 43
CuS/NiS, 290 mV 44
NiS,/CoS, 235 mV 45

Ni-Co LDH (145.1 mV dec'). On the basis of the Tafel slope
of Ni-Co LDH/Ni-Mo-S, it can be seen that the Tafel slope of
the Ni-Co LDH/Ni-Mo-S hybrid material is 16.4 mV dec ' in
the potential region of 1.15-1.40 V (Fig. 5b), demonstrating
that the oxidation of Ni-Mo-S is a very fast process. This
result is assigned to the optimized water adsorption energy
to water species and large surface area of the Ni-Co LDH/Ni-
Mo-S. In the region 1.40-1.69 V, Ni-Co LDH/Ni-Mo-S
displays a higher Tafel slope of 116.6 mV dec’, which
indicates that the O—O bond formation is a slow kinetic
process. The double-layer capacitances are provided in order
to explore the relationship between the catalytic activity and
structure. The double-layer capacitance of Ni-Co LDH/Ni-
Mo-S (13.7 mF cm™) is larger than that of Ni-Co LDH/Zn-
Mo-S (12.5 mF e¢m ), Ni-Co LDH/Co-Mo-S (5.9 mF cm?)
and Ni-Co LDH (0.9 mF cm ), which demonstrates that the
Ni-Co LDH/Ni-Mo-S material has more exposure to the
active sites (Fig. 5c). It can be seen from Fig. 5d that Ni-Co
LDH/Ni-Mo-S also displays the lowest overpotential (290
mV@40 mA cm?) compared to Ni-Co LDH/Zn-Mo-S (330
mV), Ni-Co LDH/Co-Mo-$ (360 mV), Ni-Co LDH (390 mV)
and RuO, (300 mV) (Fig. S4t). Moreover, the Ni-Co LDH/Ni-
Mo-S material displays an extremely superior mass activity of
20.5 A ¢! at an overpotential of 400 mV, which is larger than
that of Ni-Co LDH/Co-Mo-S and Ni-Co LDH/Zn-Mo-S. In
addition, Faraday efficiency is given to show whether all the
produced oxygen is converted from electricity, and further
examining the conversion rates between electricity and
chemical energy. The experiment characterization suggests
that the Ni-Co LDH/Ni-Mo-S electrode presents 95%
efficiency for OER (Fig. S57).

Based on the above analysis, the SEM characterization
demonstrates that the hierarchical architecture of the one-
dimensional nanorod and two-dimensional nanosheet
architectures promotes the transmission and diffusion of the
electrolyte and increases the active site of the catalyst,
thereby leading to a rapid charge transfer rate and enhanced
electrochemistry activity of the electrode. In addition, Ni-
Mo-S has superior electronic conductivity and thus reduces

2866 | CrystEngComm, 2021, 23, 2862-2868
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the electrical resistance of the materials while improving the
electron transfer rate. The H,O molecule is first adsorbed on
the interface of Ni-Co LDH and Ni-Mo-S due to the presence
of Ni-Mo-S, in which Ni-Co LDH uses as an electron transfer
promoter and generates oxygen active centres, which then
react with the interface of Ni-Mo-S. Moreover, Ni foam with
a porous, higher specific surface area and superior metal
properties was used as the current collector, which brings
strong electrical connection among the catalyst and
conductive substrate. Importantly, 3D texture due to the Ni
foam brings high gas diffusivity and easy penetration of the
electrolyte and results in better catalysis for the Ni-Co LDH/
M-Mo-S (M = Zn, Co and Ni) binder-free materials. Thus, the
problems of “dead volume” and slow gas diffusivity are
solved, leading to an improvement in the electrocatalytic
water oxidation activity. We also researched the durability of
the Ni-Co LDH/Ni-Mo-S electrode, and it is found that the
current intensity of the Ni-Co LDH/Ni-Mo-S material has no
obvious attenuation after 15 h of measurement
(Fig. 6a and b). Recently, some electrocatalytic samples are
also found to be stable and converted into active species
during oxidized conditions. A series of characterization was
performed so as to further research the crystal phase,
microstructure and active composition of the Ni-Co LDH/Ni-
Mo-S material after the reaction. The characterization
analysis suggested that the crystal phase and microstructure
of the electrode hardly changed appreciably (Fig. S61). In
addition, XPS characterization was performed to study the
active composition of materials. It was found that the XPS
signals of Ni and Co were almost unchanged before and after
the reaction (Fig. S7a-ct). As shown in Fig. S7d and e,i the
reduction in the Mo 3d and S 2p signals suggests that the
Ni-Co LDH/Ni-Mo-S electrode surface underwent partial
oxidation, resulting in the loss of a small amount of Mo and
S. However, the electrocatalytic performance of the material
will not be affected during the water oxidation process. The
change in the oxygen signal (Fig. S7f}) also indicates that
amorphous oxides (Mo doped NiOOH) are in situ formed on
the catalyst surface, which is the real catalytic species.

In the process of water oxidation, the active oxides or
hydroxides (NiOOH) will be in situ generated on the surface
of the material. DFT calculations were performed to estimate
the adsorption energy of water on the surfaces of NiOOH and
Mo-NiOOH. It is well known that the higher the surface
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Fig. 6 (a) Polarization curve of Ni-Co LDH/Ni-Mo-S. (b) Durability
measurement of the Ni-Co LDH/Ni-Mo-S electrodes at 1.40 V.
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adsorption energy of water on the electrode, the higher the
catalytic activity of the material. As displayed in
Fig. 7a and b, the optimal ball-and-stick model for water
adsorption on the catalyst surface is given. As shown in
Fig. 7c, the distribution of the state density of Mo-NiOOH
near the Fermi level is larger compared to NiOOH, which
proves that Mo-NiOOH has good electrical conductivity. It
can be seen from Fig. 7d that the water adsorption energy of
Mo-NiOOH (-0.76 eV) is significantly greater than that of
NiOOH (-0.16 eV), which proves that the greater the water
adsorption energy is, the more favorable it is for the water
oxidation reaction to occur. In addition, the state density
distribution is mainly composed of the p orbital of O and d
orbital of Ni for NiOOH (Fig. S8t). The state density
distribution is mainly made up of the d orbital of Ni, d
orbital of Mo and p orbital of O for Mo-NiOOH (Fig. S97).
The d orbital of Ni overlaps with p orbital of O and the d
orbital of Mo overlaps with the p orbital of O, proving the
formation of the Ni-O and Mo-O bonds.

4. Conclusion

A series of Ni-Co LDH/M-Mo-S (M = Zn, Co and Ni)
materials was first prepared taking advantage of the growth
mechanism of the Kirkendall effect, ion exchange reaction
and Ostwald ripening. The Ni-Co LDH/Ni-Mo-S material
presents excellent water oxidation performance (overpotential
of 290 mV@40 mA cm ), which is comparable to that of
RuO, electrocatalysts containing noble metal (overpotential
of 300 V@40 mA cm?). The results of the experiment proved
that introducing different metal ions into M-Mo-S affected
the electrochemistry activity of the Ni-Co LDH/M-Mo-S (M =
Zn, Co and Ni) catalyst. Subsequently, a long time
electrochemical activity test suggested that the current
intensity of the Ni-Co LDH/Ni-Mo-S electrode has no

This journal is © The Royal Society of Chemistry 2021
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obvious attenuation during the stability measurement. XPS
characterization results showed that some loss occurred for
the active species, but did not cause the degradation of
catalytic activity. The DFT calculation results suggest that
Mo-NiOOH has the optimal adsorption energy of water
compared to NiOOH, which is probably the main active
center in the water oxidation reaction. This study fills the gap
for the exploitation of low cost and robust hybrid catalysts
and offers a novel idea for the realization of hydrogen
production from industrial water splitting.
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Abstract: The pathological features and specific causes of lung liver and spleen injury of rats induced by
methane explosion in a pipeline are analyzed to provide evidences for the clinical treatment of injury
caused by gas explosion. The damage effects of shock wave on the rats in different positions in the pipe—
line are observed by using the model of methane-air premixed gas explosion shock wave impacting on
rats. The damage effect of shock wave on lung liver and spleen and its mechanism are studied from the
histopathology. The results show that the severity of injury of rat in the front end of pipeline is more seri—
ous than that in the rear end after the explosion of methane. However the injury of its lung tissue at the
rear end of pipeline is damaged by shock wave more significantly than that of rats in the front end. The

alveolar collapse is obvious and the connection between type | lung cells and type I lung cells is bro—
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ken and disappeared. One of 5 rats died at the front end of pipeline and 5 rats all died in the rear end

of pipeline. The damage of liver tissue is mainly vacuolar degeneration of liver cells blood sinus conges—

tion and significant hemorrhage. Some varying degrees of congestion bleeding inflammatory cell infil-

tration and necrosis and abscission of bile duct epithelial cells appear in portal area. It is found that the

neutrophils of survival animals were infiltrated. The injuries of lung liver and spleen can be observed in

methane explosion model. The lung injury is obvious and fatal. Microstructure and ultra-structure of lung

indicate that lung is the most sensitive organ which is the primary target organ impacted by shock wave.

Key words: methane; explosion; shock wave; rat; lung
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Fig. 1 Schematic diagram of pipelined explosive device
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Tab.1 Burns and pulmonary hemorrhage of rats
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Fig.3 Rat burns and pulmonary hemorrhage
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Changes of lung microstructures of rats exposed
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Fig.5 Changes of liver microstructures of rats exposed

to methane explosion
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6
Fig.6 Changes of spleen microstructures of rats exposed

to methane explosion
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Fig.7 Changes of lung ultrastructures of rats exposed to methane explosion
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